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Renormalization-group approach to the dynamical Casimir effect
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In this paper we study the one-dimensional dynamical Casimir effect. We consider a one-dimensional cavity
formed by two mirrors, one of which performs an oscillatory motion with a frequency resonant with the cavity.
The naive solution, perturbative in powers of the amplitude, contains secular terms. Therefore it is valid only
in the short time limit. Using a renormalization-group technique to resum these terms, we obtain an improved
analytical solution which is valid for longer times. We discuss the generation of peaks in the density energy
profile and show that the total energy inside the cavity increases exponen&l§50-29478)03103-5

PACS numbd(s): 42.50.Lc, 42.50.Ar, 12.26-m

I. INTRODUCTION ing wall induces an exponential growth of the total energy,
and that peaks form inside the cavity, which travel at the
The problem of quantum fluctuations inside cavities hasspeed of light bouncing against the walls.

attracted attention for many yeal$]. A way to study the We consider a one-dimensional cavity formed by two per-
structure of the vacuum is to distort it by changing the confectly reflecting mirrors. One of them is fixed a0, while
figuration of the cavity in timd2,3]. The simplest configu- the other one performs an oscillatory motitut) =L[1
ration is that of a one-dimensional cavity formed by two +esin@mt/Lg)], with e<1 andge N, i.e., the moving mirror
perfectly reflecting mirrors, one of which is fixed and the oscillates with a frequency equal to one of the eigenfrequen-
other one is allowed to move in a predetermined way, orcies of the cavity. We shall assume that the oscillations begin
rather, its motion is determined by the backreaction of thett=0, and that the mirror is at rest fox<0. Note that we
electromagnetic fiel@4]. There are in fact only a few prede- shall not treat the moving mirror as a degree of freedom
termined motions which allow an exact resolution of the(either classical or quantumbut just as a given time-
problem. In[5] a special motion for the mirror, which has an dependent boundary for the electromagnetic field inside the
exact solution, has been considered, and it has been showavity. The vector potentialA(x,t) satisfies the one-
that the Casimir force may be resonantly enhanced6)m  dimensional field equationlA=0 and the boundary condi-
geometrical method for solving the problem for arbitrary tions A(x=0,t)=A(L(t),t)=0 for all times. Therefore one
wall motions has been developed, and basically the samean express the field inside the cavity as
structure for the electromagnetic field within the cavity has -
been found. Of special interest are the cases where the mov- _ *
ing mirror oscillates with one of the eigenfrequencies of the A(X’t)_gfl [0 + A (x,D)], @)
unperturbed cavity7—9]. A naive approach is to make per-
turbations in the amplitude of oscillation. However, this per-where the mode functiong,(x,t) are positive frequency
turbative treatment has only a very limited range of validity: modes fort<0, anda, and al are time-independent annihi-
the appearance of secular terms proportional to the time imation and creation operators, respectively.

plies that after a short period the approximation breaks |f one writes the modes in terms of a functi®(t) as[2]
down. In this paper we apply a method inspired in the renor-

malization group(RG) to treat these singular perturbations. i
The method has a wide range of applicatjd6], especially P(x,t) = Jank
to ordinary differential equation problems involving multiple ™
scales, boundary layers, asymptotic matching, and WKBpe poundary conditions are met provided that
analysis. The main advantage of the RG method is to provide
a simple and unified calculational method for all problems of R(t+L(t)—R(t—L(t))=2. ®)
this sort. In our present case, the application of the method to
the dynamical Casimir effect permits us to get a solution forThe complete solution to the problem involves finding a so-
the structure of the electromagnetic field within the cavitieslution R(t) in terms of the prescribed motioh(t). The
that is valid for a period of time longer than that of the modes are positive frequency modes fer0 if R(t)=t/L
perturbative case. With the solution at hand, we study localor —Ly<t=<L,, which is indeed a solution to E¢3) for t
properties of the field such as the energy density. In agree<0. Note that the boundary condition f&(t) involves its
ment with other authorf6], we show that the resonant mov- values over the whole range of timeL <t<L,,.
In what follows, we will describe a method of finding an
analytical approximation to the solution of E@). We shall
*Electronic address: dalvit@df.uba.ar first obtain a perturbative solution by expanding in powers of
"Electronic address: fmazzi@df.uba.ar the amplitudee (Sec. Ill). As this perturbative solution will

(e~ TkmR(t+x) _ g=ikaR(t=x)) )
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contain secular terms, it will be valid only for short times,

i.e., et/Ly<1. Using RG techniques, we will be able to per-  Y(t)=Ysin(t+0)+e
form a resummation of the secular terms and obtain an ana-

lytical approximation valid for a longer period of time \&
€%t/Lo<1 (Sec. IV). In Sec. V we will use this solution to +gpicos3(t+O)]—cogt+0)}
describe the evolution of the mean value of the energy den-

sity |nS|d¢ the cavity. In order _to get acqualnted Wlth theWhere nowY and ® are functions ofr. Now comes the
renormalization-group method, in Sec. Il we will describe a . ; . o .
simple example where the resummation of the secular terny rucial point. Asr does not appear in the original equation or

is performed for a particular ordinary differential equation.In the initial conditions, the s_olut|0r) E(.QG) shpuld not de-
The reader already familiar with the work of R¢1L0] can pend on. Thert_afore the partial derivative w!th_respectqto
skip the next section should vanish, i.e.,dy/d7);=0 for anyt. This is the RG

equation, which implies

Y Y .
5(1_ Z)(t—r)sm(t+®)

+0(€?), (6)

day v/ Y?
Il. A SIMPLE EXAMPLE EZ EE( 1— s +O(62),
Let us consider the Rayleigh equation

de _oe? 7
d2y++ 1/dy\® dy 0 A ar o€ ™
ae Y3l ar) Tatr) 7O @

The solutions to these equations are
where e is a small number. This is an interesting oscillator Y2(to) -1z

because it can be shown that, for any initial condition and ~ Y(7)=Y(to) 975(77t°)+T(1—875”7t°))
any positivee, the exact solution becomes periodic at long
times and therefore approaches a limit circle in phase space +0(e(m—ty)),
[11].

The Rayleigh equation can be solved perturbatively using
an expansion in powers o, that is,y=y,+ ey; + O(€?).
Up to first order ine, the perturbative solution reads

0(7)=0(to) + O(e*(7—t9)), ®

whereY(ty) and®(ty) are constants to be determined by the
initial conditions. We still have the freedom to choose the
arbitrary time 7. The obvious choice i$= 7, since in this
(t—tg)sin(t+0y) way the secular term proportional te- 7 in Eq. (6) disap-
pears. Assuming the initial conditiop(t,) =0, y(to) =2a,
YS 5 with a any real number, we find/(tg)=2a and O(ty) =
+361c083(t+Og)]—cost+ @)} +O(€%), (5)  —t,. Finally, the RG-improved solution reads

Yo1 Y3
2\ 4

y(t)=Yosin(t+0,) + €

t3

where Y, and O, are constants determined by the initial y()=Y(D)sin(t—to) + e—g¢ {cog3(t—to)]—codt—to)}
conditions at arbitrary=t,. This perturbative solution does 5

not become periodic and, therefore, it is not a good approxi- +0(e), ©)
mation for long times. Indeed, due to the presence of the

secular term, the naive perturbative solution is valid only forthat is valid fore?(t—ty)<1. Note that the improved solu-
times close to the initial timeéy, and breaks down foe (t ~ tion becomes periodic and approaches a limit circle of radius
—tg)=1. This is typical of systems showing parametric 2 for e(t—ty)>1.

resonance. Usually one has a system weakly coupled to an It is interesting to remark the analogy with the usual RG
external resonant force, and as one tries to make a perturbapproach in quantum field theory; plays the role of the
tive analysis, the corrections possess secular terms, i.alltraviolet cutoff (although there are no divergences but
terms that grow linearly with time. In the following we shall secular terms heyeY, and ®, are the bare coupling con-
adopt the RG method to treat singular perturbations and wstants, and and® are the renormalized counterparts evalu-
shall use it to make an improvement to the perturbative soated at the “scale”r. The equation is “renormalizable”
lution, which shall be valid for longer timeg?(t—t;)<1. because the secular terms can be absorbed into the bare pa-
The basic ide410] is to introduce an arbitrary time, split  rameters. As anticipated, the RG is a straightforward method
t—ty as ¢{— 7)+ 7—to, and absorb the terms proportional to by which to obtain, from the naive perturbative solution, an
7—1, into the “renormalized” counterpart¥(7) and©(7) improved solution which is valid for longer times. In this
of the “bare” parameters contained in the zeroth order soparticular example, it can be shown that the RG method is
lution, that is,Y, and®,. Using this idea one eliminates the equivalent to multiple-scale analy$ikl], with the additional
secular terms proportional to—ty, and the functiony(t) practical advantage that it is not necessary to kropriori
takes the form the multiple time scales.
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lll. PERTURBATIVE SOLUTION TO THE DYNAMICAL
CASIMIR EFFECT

We will now solve Eqg.(3) using a naive perturbative
expansion. We expand the functid®(t) in terms of the
small amplitudee and retain first order terms onhR(t)
=Ry(t) + eR4(t). Equating terms of the same order we get

Ro(t+Lo) —Ro(t—Lo)=2, (10
qm
Ri(t+Lo) —Ry(t—L o)—_Losm( )[Ro(t‘H—o)
+R4(t—Lg)]. (11
The general solution to Eq10) is
t (Nt nt
Ro(t)=a+ —+ >, Ansm( +B cos( ”
Lo n=1 Lo I—0
12

wherea,A,,, andB,, are constants determined by the bound-

ary condition, that is, by the value &{(t) for —Lo<t<L,,.
Introducing this solution into Eq.11) we obtain
1
- E[Rl(t"' Lo) —Ry(t—Lo)]
. (qmt) 7w N _((g+n)mt
—sm( » + 221 n(—1) {An sin| ——
([ (g—n)mt (g+n)at
=+ sin| L—() +B,| co L—o
—n)mt
Lo
whose general solution reads
t qmrt
—(_ q+1l
Ri(t)=(—-1) L()(sm( Lo )
T [ (g+n)mt ((g—n)mt
+En21 n(An sin L )+sm( Lo

(g+n)at
Lo

(q—n)mt

+B,¢C -
0

of ) o

whereg(t) is an arbitrary periodic function with period_3.

o

14

We see that, as in the case of the Rayleigh oscillator, the

perturbative correction contains secular terms that grow lin
early in time. Therefore this approximation will be valid only
for short times, that ise t/Ly<<1.

If we assume that the boundary condition ®({t) is al-
ready satisfied biRy(t), then the periodic functiog(t) must
be chosen in such a way th&;(t)=0 for —Ly<t<L,,.
Therefore
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) B 2 (qwz>
g(2pLytz)=(—-1) L_o sin L_o
T [(g+n)mz
+En>1 n{An sin —Lo )
o] G0 e 07
—cos{—(q_n)wz) ” (15
Lo

wheret=2pLy+2z, p=0,1,2 ..., and—Ly<z=<L,. Given
t, the value of the integep is obtalned ap=3int(t/L) or

= 1[int(t/Ly) + 1] for int(t/L,) even or odd, respectively.
Note that during the first periodpE0), g(t) makesR,(t)
vanish identically. As we have already seen, since the mirror
is at rest fort<<0, we must impos&(t) =t/L, for —Ly=<t
<L,. Thereforea=A,=B,=0, and the perturbative solu-

tion reads
t
L—sm

The naive perturbative solution to the dynamical Casimir
effect has been previously discussed in RR€J. In that work

the periodic functiong(t) was taken equal to zero, which
resulted in the omission of the third term in E46). Thus

the solution obtained there does not satisfy the correct
boundary condition. Note, however, that after many periods
(1<t/Ly<e 1) both solutions practically coincide.

qmrt
Lo

qmz

R(t)= i+ e(—1)9*1
Lo

z
L—OSII’]

(16)

IV. RENORMALIZATION-GROUP IMPROVEMENT

We will now adapt the RG method of Sec. Il in order to
obtain a solution to Eq(3) which is valid beyond the short
time limit. Let us introduce the arbitrary timeand splitt as
t— 7+ 7. The perturbative solution can then be written as
[see Egs(12) and(14)]

_(nt nat
R(H)=a(r)+ >, {An(T)SIn( +Bn(r)c05< ”

n=1 L LO

+tE—OT+etE—OT( )q“(sm qL0t>
§n/ n(—1)" [ An(7) sm(—(q Lr;)wt)
+sin —(q—n)wt +B,(7) cos(—(q+n)77t>
0 I-0
—cos(m_l_ﬂ +9g(t,7)+0(€?), (17
- 0

where the bare parametexsA,,, andB,, have been replaced
by their renormalized counterpard$r), A,(7), andB,(7).
Hereg(t,7) denotes the functiog(t) of Eqg. (15 with the
same replacement. Note that thgft, 7) is no longer a peri-
odic function.
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The RG equationdR/J7),=0 consists in the present case |n order to get the coefficien®,, we expand this solution in

of three independent equations powers ofs. In this way we obtain that the only nonvanish-
sa(r) 1 Tg coefficients areA,_o(7*) = — (2/7q)In(costyr) and
o Ly — +0(€), (19 ﬁm aj = (2/mqj)tanH(q7*) with j € N. Note in particular that
Am<o=0, which then means that the original coefficieAts
AT (=1 w are equal to thé\,’s.
ar €L, [5nq+ §{|”—Q|A|n—q| The RG-improved solution foR(t) can be obtained from

Eq. (17) by settingr=t. It is given by
_(n+Q)An+q} +O(52)1 (19

R(=r +2 AqJ(t)sm<q|]_ m +eg(t,t). (25
0

Bo(r)  m(—1)9t

or ¢ 2L, [In—=alBjy—q+(n+0)Bpn.q] Using the explicit form of the coefficieni&,, we find
+0(€?), (20) _[q)t 2 iqtiL
,;1 Agi(t)sin| —— =—W—qlmln[l+§+(l—§)e o],

where we recall that the index is a positive integer. The (26)
solution to Eq.(18) is trivial: a(7) = 7/Ly+ «, with x« a con-

stant to be determined. If one writég,=A,~A_, andB,  Where we have defined=exp(—1)"'nget/Lo]. The (now
=B,-B_, (n=1), where the new variables satisfy nonperiodi¢ function g(t,t) can be easily evaluated,

= qm qjm
Ay 2 - ~ (t,t)=(— 1)Q— sm( 1+Z Agi(D) cos( ”
= Ot (M= )R (M )R+ O(), 9 Lo ai(1)a1Co8g =
-
21 z
@ =(— 1)“— sm(q—)
_ L
Bm - - )
_*:(m_q)Bqu+(m+q)Bm+q+o(€ ), (22 2¢ @7
T X . 2
1+ &+ (1— ¢ cog mqz/Ly)
thenA, andB,, satisfy Eqs(19) and(20), respectively. Here . _
we have introduced a new time*=rem(—1)9"%/(2L,).  Finally, the RG-improved solution reads
Since this set of first order differential equations ensures the
independence of the solutid®(t) with 7, one can set=t, R(t)= L_ i Im In[1+ &+ (1— &)el9m/Lo]
which makes the terms proportional te-t in Eq. (17) van-
ish identically. , .
The initial conditions for these differential equations are +e(— 1)q_ sin am )
dictated by the perturbative solutioa(0)=A,(0)=B,(0) Lo
=0. This means that=0 and thaB,(t)=0 for all t. The 2¢
A N X . (28
coefficientsA,,, are not all zero due to the presence of the 1+ 824 (1— £2)cod mq7lLo)

inhomogeneous term (&) 5,4. In order to solve the equa-
tion corresponding to these coefficients we introduce th; js worth mentioning that this solution is valid as long as

generating functionalF (s,7*) =2 ,s"A,(7"). Using Eq.  e2t/L,<1, that is, the range of validity of the solution is
(21) we see that it satisfies the following differential equa-|onger than the perturbative one {/Ly,<1). In Fig. 1 we
tion: plot this function for the particular casp=4.
A solution to Eq.(3) in the long time limit was already
ok 2 q JaF 441 od-q 23 obtained in[8] using a different procedure. It coincides with
9 Pt +E[S —s 1 (23 our first two terms in Eq(28). There is perfect agreement

between both solutions at long times because it can be shown
with boundary conditiorF (s, 7*=0)=0. We make the fol- that the third term in Eq(28) is negligible in this limit(see
lowing ansatz for the solutionF(s,7*)=®[e” T*g(s)] Append!x A. However, as we have mentloneq |n.the preped-
+h(s), where®[ - -], g(s) and h(s) are functions to be ing sgctlon, _thls ternpthat comes from the periodic function
determined. Introducing this form of the generating func—g(t)] Is crucial for the solution to satisfy the correct bound-

tional into the differential equation, one determines the lasf"Y condition at short times.
two functions. The functiod is determined once the initial

boundary condition is imposed. Finally the solution reads V. ENERGY DENSITY INSIDE THE CAVITY
g q - . In order to study the local properties of the electromag-
o 2 e (1+s)+el (1-sT) netic field inside the cavity, we concentrate on the energy
F(s,7)=——In . (29 . .
q 2 density of the field
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FIG. 2. Energy density profile between plates for fixed time
t/Ly=20.4 for theq=4 case. The amplitude coefficient is
=0.01.

1
<T00(X,t)>: E

. (29

(0A(x,t)
at

aA(x,t))z
IX

FIG. 1. R(t) vst/Ly as given by Eq(28). The values of the
parameters arg=4 ande=0.01.
2
>+< time at the midpoint between plates, also for the4 case.

_ _ A rather different picture appears when one considers the
where the expectation values are taken with respect to thg=1 case, that corresponds to an oscillation frequency equal
vacuum state. Using the well-known point splitting methodtg the fundamental frequency of the cavity. In this case the
to regularize the divergence appearing in the energy densitynergy density at a given point oscillates in time around the

[3], one can obtain the following expression for the renor-giatic Casimir value, and its time average coincides with that
malized energy density(Too(x,t))=—f(t+x)—f(t=x), qe.

where

VI. CONCLUSIONS

— -l =] +5(R)?|. (30)

In this paper we have studied the one-dimensional dy-
mical Casimir effect of a resonant oscillating cavity. For
_ : ) this one-dimensional case, the modes of the electromagnetic
=012... [seg Eq.(28)], then thg energy de.ns_|ty will de- field can be expressed in terms of the solution to the so-
velop a4 function singularity which .W'” be |nf|n|tely_ '€~ called Moore equation. We have used a renormalization-
flected back and forth between the mirrors. The physical Or"group improvement of the naive perturbative solution and we

gn Of this smg_ulgrlty IS th_e |n_|t|al d|§co_nt|nU|ty of the wall have succeeded in obtaining an analytic solution which is
velocity. We will ignore this singularity in what follows.

The structure of the electromagnetic field within the cav-
ity for our solutionR(t) is similar to that for other existing
solutions in the literature. In particular, fg=2 the energy
density grows exponentially in the form gftraveling wave
packets which become narrower and higher as time in-
creases. The total energy within the plates increases expc
nentially at the expense of the energy needed to keep th a
plate moving. In Fig. 2 we show the energy density profile |2
between plates for a fixed time and for the case4. As v
time evolves, the peaks move back and forth bouncingyp
against the mirrors. The height of the peaks increases a
e?™<Lo and their width decreases as™‘o, so that the
total area beneath each peak, and hence the total energ J
grows ase™<Lo_ Apart from this exponential growth, there 00 M»M/u,ﬂ_%wuuujﬂjJvJLUJLJ\JLL ARARRRRARANN
are “sub-Casimir” regions: between the peaks the energy T
density takes valueg? times smaller than the static Casimir
case,(Too)static= — 7/24L3. One can prove all these proper-
ties analytically by computing the energy density with the
solution given in Eq(28) and its derivativegsee Appendix FIG. 3. Energy density as a function of time for the midpoint
B). In Fig. 3 the energy density is shown as a function ofx/L,=0.5 between plates. The parameters@re4 ande=0.01.

This expression involves second and third derivatives OBa
R(t). As R’(t) is discontinuous att=(2p+1)Ly, p
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valid up to timest<Lqe 2, thus extending the range of va- €z
lidity of the perturbative solutiont Lye™ ). We have cal- Rnp(t)~(— 1)qL—sin
culated the energy density inside the cavity and we have 0
shown that a nontrivial structure appears, with a series ofyhich then leads to the perturbative solution given in Eq.
peaks that grow exponentially in time and move back anq1e).

forth bouncing against the mirrors. Although this structure  For the long time limitt> e~ 'L, (butt<e 2L, since this
has already been found in a previous w8k here we have poses the upper limit for the validity of our RG solutipwe
presented an analytic derivation based on theanalyzeR, andR,, separately. We want to show that in this
renormalization-group method described 10]. We expect  |imit, the latter function is negligible. This can be graphically
this method to be useful to analyze the more realistic situayerified, but here we present an analytical demonstration.
tion of a three-dimensional oscillating cavity. This analysisThe functionRs has a first term, linear in time, and a second
can be performed by studying the set of differential equapne, that for late times becomes an oscillating function. The
tions satisfied by the modes of the electromagnetic figld  amplitude of the oscillations is independenteoDue to this

qmz
5! -

This topic will be the subject of further investigation. second termR develops a staircase form for long times, as
shown in Fig. 1. Within regions df between odd multiples
ACKNOWLEDGMENTS of Ly (i.e., in each periogh), there appeaq jumps, located

at values ot satisfying cosfnt/Lg)=+1, the upper sign cor-
responding to even values @f and the lower one to odd
values ofg. Next we calculate the first derivative &;.
Sinced£/dt is proportional toe&, one can differentiate the
function Rs with respect to time, treating as a constant. The
Sirst derivative is therR (t) =2&y(t), where
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APPENDIX A: SHORT TIME AND LONG TIME ()= . ~ _
BEHAVIOR OF R(t) Lo[1+ &4 (1—&9)codgmt/Ly)]

In this appendix we analyze the short timet{L,<1) Using Eq.(A3), we see that vanishegdiverge$ exponen-
and long time € t/Ly,>1) behavior of the RG-improved tially for g even(odd at long times. For even, the first
functionR(t) given in Eq.(28). Let us first split the solution derivativeR, develops peaks for timeag=[(2n+1)L,]/q,
asR(t) =Rg(t) + R,,(t), where with n an integer. The height of these peaks grows exponen-
tially as £~1. Between peaksR. vanishes exponentially for
long times. In a similar fashion, for odyl the first derivative

(A5)

t 2 _
Rs(t)= ———1Im In[1+ §+(1_§)elqwt/LO]

Lo mq develops peaks at,=2nLy/q. In the following, we shall
) consider only the even case, the odd one being completely
_t iarctar% sin(qt/Lo) } similar.
L, mq (1+&)/(1— &) +codqmt/Ly) |’ Let us now analyze the functidR,,. Once again treating

(A1) & as a constant when differentiating with respect to time, this
function can be expressed in terms of the first derivative of

z  [qmz R as follows:
Rnp(t) = €e(—1)9—sin| ——
Lo Lo _(qmt)|
Roplt)=(—1)%ezsin| T— | RL(D). (A6)
X 28 (A2) ’
1+ &%+ (1— &%) cog mq7lLy) | We see thatR,, is the product of a bounded factofz(

<L) times a functiorf (t) =sin(qnt/Lo)R(t) that is propor-
with tional to the first derivative oR, and might thus be un-
bounded. We shall now show that thisnst the case. Far

£=ex (—1)9* tmget (A3) from the position of the peaks; is bounded becaud®; is.
Lo ' In a surrounding of,,, we expres$ as
The functionR,,, stems from the RG improvement of the 2mwgés

periodic functiong(t), and it is nonperiodic. The variable F(8)=— L[(1—&)(m2q26%2) +2£2] (A7)
(—Lo<z=L,) is given in terms oft asz=t—2pL, with 0 q
p=012... .This integem is obtained from the value that \here 5= (t—t,)/L,. First, we note that this function van-
t takes asp=3int(t/Ly) or p=3[int(t/Lo)+1], for jshes fors=0, i.e.,Rp(t=t,)=0. Second, this function has
int(t/Lo) even or odd, respectively. extrema equidistant from t, located at .=

For the short time limit<e~!L,, these functions are +2¢ mq\1— €2 and at these pointS(5.) = F 1L 1— &2.
t ; i Since for long times{—0, we conclude thaF(J.) is
Ry(t)~ — —(— 1)q6_3in(qi) ’ bounded by 1/,. ConsequentlyR,, is a correction of order
Lo Lo \ Lo € to the second term of EGA1).
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APPENDIX B: STRUCTURE OF THE where again we treaf as a constant. For evaq all these
ELECTROMAGNETIC FIELD derivatives develop peaks at timgs=[(2n+1)Ly]/qg. As
In this appendix we study briefly the structure of the elec-can Pe €asily seen from the above equations, the height of

tromagnetic field within the cavity as given by Eqg9) and  the peaks for themth derivative ofR is proportional to
(30) for our solutionR(t), in order to understand the form of ¢ - Using the same methods as in Appendix A, one can
the energy density profile shown in Figs. 2 and 3 in the longshoW (after some algebjathat near the times,, the mth
time regimeet/L,>1. As in Appendix A we will splitR(t)  derivative ofR,; also has peaks whose heights are propor-
asR(t) =R+ Ry, [see Egs(Al) and(A2)]. In order to ana- tional toe£™ ™. Sincee<1, it means that at long times all the
lyze the energy-momentum tensor, we need to study the firgterivatives ofR,, are negligible with respect to those Rf.

three derivatives of the solutidR(t). For Ry we get The form of the energy-momentum tensor will be governed
just by the first part of our solution, namely, R;.
Re(t)=2&y(t), (B1) Let us concentrate only on the contribution to the energy
density which is proportional t&’? [see Eq(30)]. From the
RI(t)=2¢&(1— gz)qum(w_qt) JA(), (B2) above discussion it is (_:Iear_ thag, will develop peaks which
Lo grow ase’™Lo. Their width decreases exponentially as

e~ "L, 50 the total area of the peaks grows exponentially.

R (t)=2¢(1— gz)(wq)zi (1+ ¢2)C0{ 7T_qt) T_he same holds for the total energy in the cavity. The analy-
Lo sis of the other two terms of E|30) leads to the same
mqt conclusion.
+(1—&?) 1+Sin2(L_)“ JA(1), (B3) The caseq=1 shows a different behavior. Indeed, when
0 the energy density of the field is computed using the deriva-
tives of Rg given above, there is a cancellation between the
w(t) = - , (B4) d_ifferen; contributi(_)ns in _Eq_(30) and the final answer coin-
Lo[1+ &2+ (1— &) cogqmt/Lg)] cides with the static Casimir value.
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